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Abstract This paper extends an approach for estimating
the ancestry probability, the probability that an inbred
line is an ancestor of a given hybrid, to account for
genotyping errors. The effect of such errors on ancestry
probability estimates is evaluated through simulation.
The simulation study shows that if misclassification is
ignored, then ancestry probabilities may be slightly
overestimated. The sensitivity of ancestry probability
calculations to the assumed genotyping error rate is also
assessed.

Introduction

Establishing parentage

Establishing parentage is important in many biological
settings. It secures legal relationships in human beings
and helps to protect intellectual property in plant vari-
eties.

A number of methods exist for establishing parent-
age; some of these are reviewed below. The starting
point for the work reported here is the approach of
Berry et al. (2002) in identifying ancestors of hybrid lines
from among a collection of inbred lines using simple
sequence repeats (SSR) marker profiles. The Berry et al.
approach calculates the posterior probability of an
inbred line being an ancestor of a hybrid, given the SSR
profiles for the hybrid and a pool of possible ancestors.
As it is typical for such methods the calculations do not

explicitly account for errors generated during genotyp-
ing, though Berry et al. (2002) provide simulation results
indicating their method is robust to such errors. We
modify the approach to explicitly account for genotyp-
ing errors and then study the performance of the two
approaches.

Literature review

Biotechnology has created the opportunity to use genetic
material to identify ancestors and to determine pairwise
relationships. Much work in this area relies on exclusion
analysis wherein putative parents are excluded from
consideration if the genotypes of the offspring are not
consistent with the genotypes of the candidates. Exam-
ples of the application of this exclusion approach include
Alderson et al. (1999) using SSR markers to determine
parentage in brown head cowbirds; Ellstrand (1984)
identifying multiple paternities within the fruits of the
wild radish based on known multilocus genotypes of the
maternal parent; and Chakraborty et al. (1988) deriving
an analytical expression for the probability of a male
being excluded from paternity assuming the mother of
the offspring is known.

Other work in ancestry assessment is developed
through the use of probability models for genetic data.
Berry et al. (2002) developed such a probability model
and then calculated the likelihood for an inbred line
being the true ancestor of a given hybrid. That model
serves as our starting point so we return to it in the
following section. Marshall et al. (1998) identify pater-
nity in a sample of red deer based on likelihood ratio
comparisons under a similar model. The likelihood ratio
indicates how much more likely the observed genetic
data is for an alleged father than for an arbitrary male.

One difficulty is that many of the suggested methods
do not account for the possibility of genotyping errors.
Such errors could be caused by laboratory mishaps or
other errors during the data collection process. Ewen
et al. (2000) describe different types of errors in genetic
analyses and indicate that such errors can cause serious
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problems for biological inference. One type of error is
called relationship misspecification. This refers to the
possibility that believed relationships among organisms
are incorrect. Such mistakes can be caused by adoption,
alternate paternity, or mishandling errors. A second type
of error is genotyping error, where the recorded allele
score for an offspring is not the same as the allele that
would be found in the ancestor. This can occur as a
result of mutation or misscoring. Other types of errors
include misspecification of allele frequencies and of
marker–map distances. Genotyping errors are among
the most frequently occurring errors according to Ewen
et al. (2000). We focus on genotyping errors because
they occur often and because such errors will directly
impact our ancestry probability calculation.

There are earlier studies of parentage identification
that do allow for genotyping errors. For example, Bro-
man (1998), based on the work of Boehnke and Cox
(1997), identifies pairwise relationships among humans
by evaluating the likelihood of the observed genotypes
for two individuals on all the available loci given a
putative relationship between the two individuals; the
relationship which maximized the likelihood is the
‘‘estimated’’ relationship. The Broman model allows for
constant known error rate along the genome. Marshall
et al. (1998) draw paternity inference in red deer based
on likelihood ratio comparisons in the presence of
genotyping errors. They provide an approach to esti-
mate the genotyping error rate based on the observed
number of parent–offspring mismatches. Using an ap-
proach similar to that used by Marshall et al. (1998) but
with different probability models, San Cristobal and
Chevalet (1997) propose another likelihood ratio ap-
proach that accommodates genotyping errors. In their
work the unknown error rate is estimated using the
maximum likelihood approach. The San Cristobal and
Chevalet (1997) approach is able to identify parents for
various population schemes encountered in animal and
plant breeding.

Methods

Review of Berry et al. (2002) approach

Given genetic marker information for a hybrid whose
parentage is unclear or unknown and many inbreds that
are possible ancestors of the hybrid, Berry et al. (2002)
calculate the probability that each inbred is an ancestor
of the hybrid under an assumed probability model for
the genetic data.

Let i and j denote two possible inbred ancestors from
among the available set of ancestor candidates. Berry
et al. (2002) calculate the probability that inbreds i and j
are the closest ancestors of the hybrid, given the marker
information for the hybrid and the inbred candidates.
Denote this ancestry probability as Pr({i, j}|X), where X
denotes the collection of genetic information for the
hybrid. The notation does not explicitly mention the

inbred marker profiles but all calculations are condi-
tional on this information as well. In the application to
maize considered below X represents SSR genetic mar-
ker profiles. At marker site or locus m the observed SSR
marker profile is two alleles from among the nm alleles
found in the population at this locus.

The ancestry probability Pr({i, j}|X) is calculated
using Bayes’ rule. Let Pr({i, j}) denote the prior proba-
bility assigned to the event that inbreds i and j are the
closest ancestors. It is common to assume Pr({i, j}) is the
same for all pairs. The likelihood or data distribution for
the hybrid’s SSR results, given that i and j are the closest
ancestors, is Pr(X|{i, j}). The set of all possible ancestor
pairs from among the K ancestor candidates is
W(K)={{u, v}, u, v=1,..., K, u „ v}.

Using Bayes’ rule, we have

Prðfi; jgjX Þ ¼ PrðX jfi; jgÞPrðfi; jgÞ
P
ðu;vÞ2W ðKÞ PrðX jfu; vgÞPrðfu; vgÞ

¼ PrðX jfi; jgÞ
P
ðu;vÞ2W ðKÞ PrðX jfu; vgÞ

;

ð1Þ

where the last equation follows from the assumption
that Pr({u, v}) is constant over ancestor pairs. The
probability that a particular inbred candidate i is one of
the closest ancestors of the hybrid is just the sum of
Pr({i, v}|X ) over all inbreds v with i „ v, i.e.

PrðijX Þ ¼
X

v;v 6¼i

Prðfi; vgjX Þ: ð2Þ

One noteworthy point is that the sum of the ancestry
probabilities over all pairs is one. This means that
probability is assigned to some candidates even if there
are no ancestors of the hybrid in the pool of inbred lines.
We return to this point in the simulations later.

Calculating Pr(X|{u, v})

A key element of the Berry et al. approach is the
calculation of Pr(X|{u, v}), the likelihood of observing
data X given a particular ancestor pair. As a first step
consider the alleles at a single marker locus. Let Xm

denote the set of two unordered allele values of the
hybrid at locus m for m=1,..., M, and define Pr(Xm|{u,
v}) as the probability of observing Xm in the hybrid
offspring at locus m, given inbreds {u, v} are the
closest ancestors.

To calculate this single locus probability, given that
{u, v} are the closest ancestors of the hybrid, we must
determine whether each ancestor passes or does not pass
an allele to the hybrid. This implies four exclusive pos-
sibilities regarding transmission of genetic information
from u and v to the hybrid line. Let Y denote the event
that an allele is passed from an ancestor to the hybrid,
and N denote the event that an allele is not passed from
an ancestor to the hybrid. Then the four possibilities
regarding the transmission of genetic information from
the two ancestors are YY, YN, NY, and NN, where the
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first letter refers to ancestor u and the second refers to
ancestor v. Let p denote the probability that one of the
ancestor’s inbred alleles came through in the hybrid gi-
ven that the inbred is one of the two closest ancestors.
Following Berry et al. (2002), we take p to be the same
for each inbred line. The value of p is discussed below.
Assuming independence of the inheritance process from
the two ancestors the probabilities for the four cases are
P(YY|{u, v}) = p2, P(YN|{u, v}) = p(1�p), P(NY|{u,
v})=(1�p)p, and P(NN|{u, v})=(1�p)2.

If an inbred’s allele on locusm does not come through,
then the allele the hybrid has on this locus would be an
allele from another inbred ancestral line that is not one of
the two putative ancestors under consideration; a result of
laboratory error, or the result of mutation. In this case, it
is assumed that the allele is chosen randomly from among
the available alleles on locus m, with each known allele
having probability 1/nm (recall that nm is the total number
of alleles known to exist at the SSR locus m). Note that
other assumptions are possible here; the random alleles
could be assigned nonuniform probabilities based on the
population distribution.

We calculate Pr(Xm|{u, v}) by the law of total prob-
ability,

PrðXmjfu; vgÞ ¼p2 PrðXmjYY ; fu; vgÞ þ pð1� pÞPr
ðXmjYN ; fu; vgÞ
þ ð1� pÞp PrðXmjNY ; fu; vgÞþ
ð1� pÞ2 PrðXmjNN ; fu; vgÞ: ð3Þ

The four component probabilities are determined
according to the laws of genetics and our assumptions.
The calculation of the four components depends on a
number of factors: the zygosity of the hybrid, i.e. whe-
ther the hybrid is homozygous or heterozygous, the
zygosity of the inbreds, and whether there are any
missing alleles. An example of this type of calculation
follows. Berry et al. (2002) provide further discussion
regarding this calculation.

Example Suppose that at locus m we observe hybrid
alleles Xm=(3, 4), inbred u has alleles (3, 3), and inbred v
has alleles (6, 6). First, note that Pr(Xm|YY, {u, v})=0
because if v’s allele were passed on, then the hybrid
would have inherited allele 6. The same argument yields
Pr(Xm|NY, {u, v})=0. If u’s allele is passed correctly and
v’s allele is not passed correctly then Pr(Xm|YN, {u,
v})=1/nm. The remaining case covers the scenario where
Xm are two randomly selected alleles, Pr(Xm|NN, {u,
v})=2/(nm)

2, where the factor of two addresses the fact
that the hybrid has distinct (and unordered) alleles.

The value of p depends on the proximity of the
ancestor (i.e., parent or grandparent or other). If the
ancestor is a parent, then p=1 (though in practice we
ought to allow for mutations and/or genotyping errors).
If the ancestor is a grandparent, then p=0.5 because a
descendent is equally likely to inherit from that ancestor
or the other grandparent. Berry et al. (2002) use p=0.5
in their calculations because they found this value to

provide robust inferences. If the parents are present
(which means p=1), then the lower value protects
against mutations and genotyping errors. If the parents
are not present and the closest ancestors are in fact more
remote than grandparents, then p=0.5 still identifies
them because they are the closest match to the hybrid’s
alleles.

After Pr(Xm|{u, v}), m=1,..., M, is calculated, Berry
et al. (2002) calculate the joint probability for all loci,
Pr(X|{u, v}), as the product over the M markers

PrðX jfu; vgÞ ¼
Y

m

PrðXmjfu; vgÞ: ð4Þ

The use of the product implicitly assumes indepen-
dence and ignores genetic linkage. In this sense it is
equivalent to using a composite likelihood (Lindsay
1988) rather than an exact multilocus likelihood. The use
of exact likelihoods would require a multipoint calcu-
lation like that described in Ott (1991) for human genetic
data. The data for such a calculation are not available
for the maize data in our application. Composite likeli-
hoods have been used in some genetic contexts (see e.g.,
Devlin et al. 1996; Rannala and Slatkin 2000; Garner
and Slatkin 2002) to reduce computational complexity;
they are useful approximations but can involve a loss of
precision. However, Berry et al. (2002) note that the
markers in their application are spread over the ten
maize chromosomes and that they obtain similar results
for a range of numbers of marker loci. These results
suggest that the composite likelihood approximation is
adequate for their application. The use of the composite
likelihood approximation is also supported by our sim-
ulation results, discussed in a later section. In the work
reported here we follow Berry et al. (2002) and use the
composite likelihood defined by Eq. 4 so that we can
focus exclusively on the effect of modifying their ap-
proach to accommodate genotyping errors.

Once the joint probabilities for all markers are calcu-
lated using the product rule (Eq. 4), then the probability
that inbreds i and j are the closest ancestors; Pr({i, j}|X), is
computed using Bayes’ rule (Eq. 1) and the probability
that a particular inbred candidate is one of the closest
ancestors of the hybrid is calculated using Eq. 2.

Robustness of the Berry et al. approach

Berry et al. (2002) did not explicitly allow for genotyping
errors in their probability calculations. To determine the
importance of genotyping errors and to examine the effect
of missing data, Berry et al. (2002) artificially modified
their original data (a set of maize hybrids and a collection
of inbred lines) by eliminating specific proportions of al-
leles that had been scored (this gives missing data) and/or
by misclassifying (misscoring) other alleles. For example,
in order to evaluate the robustness of the approach with
respect to misscored alleles, they simulated misscored
data at 2% of the loci, 5% of the loci, 10% of the loci, and
25% of the loci for all hybrids and all inbreds. They
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examine the effect of these error levels by comparing the
number of correctly identified ancestors with and without
these extra genotyping errors, and conclude that the
method works well as long as the fraction of missing or
misscored data is below 15%.

Incorporating genotyping errors

In this section we describe a method that incorporates
misscoring or genotyping errors into the ancestry
probability calculation (Eq. 1). Our approach calculates
Pr(Xm|{u, v}) while accommodating genotyping errors
only on hybrids. This is certainly optimistic because one
expects that errors occur for the alleles of both inbred
ancestor candidates and hybrid offsprings. There are,
however, technical reasons to expect much lower error
rates in inbred lines. One source of error in hybrids
(which are generally heterozygous) is allelic competition
in DNA annealing and amplification; allelic competition
may result in one allele masking the presence of another.
This source of error does not typically occur for inbred
lines (which are generally homozygous). The methods
presented here are developed assuming a known error
rate p. This reflects the assumption that there will often
be information outside of a particular dataset about the
error rate associated with a genotyping technology. Of
course, this is not always the case; Zhang and Stern
(2003) describe some approaches to estimating p.

Calculating Pr(Xm|{u, v}) with genotyping errors for
hybrids

As indicated in the previous section the key calculation
is determining the probability of observing alleles Xm on
marker m, given u and v are the closest ancestors. In
order to contrast the calculation when genotyping errors
are accommodated and the earlier calculation, we use
the notation Pr(Xm |{u, v}, p) for the probability of
observing Xm, given that {u, v} are the closest ancestors
and the error rate is p. As needed subsequently, we also
use the notations P({i, j}|X, p) and Pr(X|{u, v}, p) in
place of P({i, j}|X) and Pr(X|{u, v}).

Let (atm, btm) denote the true allele pair at locus m
and Xm = (aom, bom) the observed allele pair at locus m
for m=1,..., M. Define Am as the set containing all
possible true allele pairs on locus m of a hybrid. When
allowing for possible hybrid genotyping errors, we have

PrðX jfu; vg; pÞ ¼
X

Am

Prððaom; bomÞ; ðatm; btmÞjfu; vg; pÞ

¼
X

Am

½Prððaom; bomÞjðatm; btmÞ; fu; vg; pÞ

Prððaom; bomÞjfu; vg; pÞ�
¼
X

Am

½Prððaom; bomÞjðatm; btmÞpÞ

Prððatm; btmÞjfu; vgÞ�; ð5Þ

where the final line reflects simplifications based on
the following observations: (1) given the true alleles the
probability distribution of the observed alleles depends
only on the error rates (and not on which pair of
ancestors we are talking about); and (2) inheritance of
the true alleles does not depend on errors in genotyping
technologies. The final term Pr((atm, btm)|{u, v}) is the
probability that the hybrid has true alleles (atm, btm) on
locus m, given {u, v} are the closest ancestors. This
quantity is precisely the one used by Berry et al. (2002)
and described in the previous section. The first term on
the final line Pr((aom, bom)|(atm, btm), p) describes the
error process; it measures the probability of observing
alleles (aom, bom), given that the true alleles on locus m
are (atm, btm).

Calculating Pr((aom, bom)|(atm, btm), p)

The new aspect of the calculation is the term describing
the error process. This term is now described in some
detail. We assume a constant genotyping error rate p on
every locus. As before nm denotes the number of avail-
able alleles on locus m. If a true allele is not correctly
identified, then we assume the observed allele is chosen
randomly according to a uniform distribution over the
remaining available alleles. The value of Pr((aom,
bom)|(atm, btm), p) depends on whether the observed
alleles match the true alleles and also on the zygosity of
each pair. The details for the different situations are
listed below with one example provided for each case.

1. Observed alleles are the same as the true alleles, i.e.
(aom, bom) = (atm, btm). Two cases are considered.

• The homozygous case, i.e. aom = bom, atm = btm.
Because the observed alleles and the true alleles are
both homozygous on locus m, the labeling of a and b
does not matter. The probability of the two hybrid
alleles on locus m being correctly identified would be
the probability of no errors, Pr((aom, bom)|(atm, btm),
p)=(1�p)2.

• The heterozygous case, i.e. aom „ bom, atm „ btm.
For a specific example, consider the case (aom, bom)=
(atm, btm)=(8, 9). When the observed alleles and the
true alleles are heterozygous, the labeling of the a
and b alleles matters. The observed alleles will be
equal to the true alleles if there are no errors OR if
both alleles are identified with error and the match
occurs due to chance. The probability of this event is
the sum of the probabilities (1) that both hybrid al-
leles are correctly identified, e.g. (8 fi 8, 9 fi 9), and
(2) that each allele is ‘‘incorrectly’’ identified as the
other, e.g. (8 fi 9, 9 fi 8). This yields Pr((aom, bo-
m)|(atm, btm), p)=(1�p)2+p2/(nm�1)2.

2. One of the two observed alleles is the same as one of
the two true alleles. Several different situations arise
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depending on whether the observed alleles or the true
alleles on locus m are homozygous or heterozygous

• The observed alleles are homozygous, but the true
alleles are not. In this case, aom = bom, atm „ btm.
Consider the case (aom, bom)=(8, 8), (atm, btm)=(8,
9). In this case one of the true alleles was measured
correctly (8 measured as 8) and the other is in error
(9 converted to 8), thus Pr((aom, bom)|(atm, btm),
p)=(1�p)p/(nm�1).

• The true alleles are homozygous, but the observed
alleles are not. In this case, aom „ bom, atm = btm.
Consider the case (aom, bom)=(9, 8), (atm, btm)=(8,
8). This is similar to the above but there are now two
ways to choose the true allele which is measured
correctly, Pr((aom, bom)|(atm, btm), p)=2(1�p)p/
(nm�1).

• Both of the observed alleles and the true alleles are
heterozygous. In this case, aom „ bom, atm „ btm.
Consider the case (aom, bom)= (8, 9), (atm, btm)=(8,
6). There are two ways to generate the observed data
pattern: either the 8 is recorded accurately (with no
error) and the 6 is not, OR both alleles are measured/
recorded in error. The probability sums the likeli-
hood of these two possibilities, Pr((aom, bom)|(atm,
btm), p)=(1�p)p/(nm�1)+p2/(nm�1)2.

3. Neither of the two observed alleles are the same as
the true alleles. In this case, aom „ atm, bom „ btm,
aom „ btm, and bom „ atm. Two situations need to be
considered depending on whether the observed hy-
brid alleles are homozygous or heterozygous. It does
not matter whether the true alleles are homozygous
or heterozygous because both are evidently measured
with error.

• Observed alleles are homozygous, i.e. aom = bom.
Consider the case (aom, bom)=(8, 8), (atm, btm)=(9, 9)
or the case (aom, bom)=(8, 8), (atm, btm)=(6, 9). In
this case Pr((aom, bom)|(atm, btm), p) = p2/(nm�1)2
which is the probability that both of the alleles are
incorrectly identified.

• Observed alleles are heterozygous, i.e. aom „ bom.
The only difference here is that because the observed
alleles are heterozygous, we must account for the
labeling of the a and b alleles. There are thus two
ways in which a given set of true alleles can be re-
corded in error to yield the observed heterozygous
pair, Pr((aom, bom)|(atm, btm), p)=2p2/(nm�1)2.

After Pr((aom, bom)|(atm, btm), p) is calculated for each
marker, and Pr((atm, btm)|{u, v}) is calculated using the
Berry et al. method, then we can use Eq. 5 to obtain
Pr(Xm|{u, v}, p). Finally, we again obtain the likelihood
for all the markers, Pr(X|{u, v}, p), by using the com-
posite likelihood approximation (i.e., assuming inde-
pendence),

PrðX jfu; vg; pÞ ¼
Y

m

PrðXmjfu; vg; pÞ:

The ancestry probabilities follow from Bayes rule,

Prðfi; jgjX ; pÞ ¼ PrðX jfi; jg; pÞ
P
ðu;vÞ2W ðKÞ PrðX jðu; vg; pÞ

:

The effects of genotyping errors

This section demonstrates the method developed for
accommodating genotyping errors using simulated data
and compares the resulting inferences to those obtained
from the Berry et al. approach. Initially results are
provided for the case where data are simulated under the
assumption of independent markers. That assumption is
consistent with the composite likelihood approach used
in our algorithm and by Berry et al. (2002). Toward the
end of the section additional simulations are used to
assess the impact of linkage on ancestry inferences.
Application to real data, from the maize hybrids con-
sidered by Berry et al. (2002), is considered in the next
section.

Data simulation

The simulated data are generated assuming

1. there are 110 possible markers for each individual
2. nine equally likely alleles identified as {1, 2 ,..., 9} are

possible on each marker locus
3. the probability that an ancestor’s allele is passed to

the hybrid offspring is p=0.5 (i.e., the closest ances-
tor is a grandparent)

4. inheritance of each marker is independent of the
others (i.e., no linkage)

5. the inbred ancestor candidates are homozygous for
each marker

6. each ancestor independently passes its alleles to the
offspring

7. genotyping errors occur independently with proba-
bility p for each of the two hybrid alleles at every
locus.

A single data set is generated based on the above
assumptions as follows. First, marker profiles for 100
inbred ancestor candidates are generated. Second, two of
the inbreds are picked as ‘‘true’’ ancestors. Third, these
two ancestors are used to generate a hybrid offspring,
introducing genotype errors with error rate p for each
allele at every locus. In practical applications the different
ancestral and hybrid lines do not have data for each
possible marker. To simulate the variability associated
with such missing data the hybrid offspring and the two
true ancestors have SSR profile information on 100 ran-
domly chosen loci (a possibly different set of 100 loci for
each). The number of loci with available marker infor-
mation is randomly varied for the remaining ancestor
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candidates as well (at least 90 loci are always present). An
example of the simulated data is provided in Table 1. This
format is essentially the same as the format of the SSR
marker profiles used by Berry et al. (2002). Note that the
hybrid is missing data on marker 3, the first inbred
(Inbred1) is missing data on marker 2, and the last inbred
(Inbred100) is missing data on marker 1.

Simulation results

We consider two distinct cases in our simulation study.
The data are always generated as above; the two cases
vary in the makeup of the data that are analyzed. The
first scenario covers the case when the true ancestors are
among the set of ancestors considered in the ancestry
probability calculation (Eq. 1), and the second scenario
covers the case where the true ancestors are not present.
The latter is included to study the nature of the ancestry
probability inferences for the realistic possibility that no
ancestor is present.

For each case simulated data is generated for a
variety of error rates. Specifically we use values of p
ranging from 0.001 to 0.5 (actual values p=0.001, 0.01,
0.1, 0.2, 0.3, 0.5). The high values are much higher than
that expected in practice but they are useful for illus-
trating methodology. Posterior ancestry probabilities
are obtained for each simulated data set using the
‘‘known’’ value of p used to generate the data set. Sen-
sitivity to the assumed error rate is explored by recal-
culating ancestry probabilities for a range of error rates
that differ from the error rate used to generate the data.

Case 1: true ancestors are present

We first consider the case where SSR marker profile
information for the true ancestors is included among the
set of ancestor candidates. Fifty different hybrids are
simulated from the same two ancestors. Each hybrid is
then analyzed separately yielding posterior probabilities
for each of the possible ancestors. Analyses are carried
out using the Berry et al. approach and the approach
proposed here to accommodate genotyping errors. As a

summary the posterior probability assigned to each of
the two true ancestors is recorded. Table 2 presents
summaries of the 100 posterior ancestor probabilities for
a range of p values (assuming the same value of p is used
to generate and analyze the data). Specifically, the table
gives the minimum, first quartile, median, mean, third
quartile, and maximum of the empirical distribution of
the posterior ancestry probabilities.

For p £ 0.3, both approaches always correctly identi-
fied the true ancestors with high ancestry probability
values. Moreover, for p £ 0.2 the ancestry probabilities
are all 1. For the case with p=0.3 the values are all near 1
with the values from the Berry approach slightly larger.
These results support the robustness results reported in
Berry et al. (2002), the ancestor probability calculation
provides accurate inferences about ancestry even with
nontrivial genotyping error rate. As the error rate goes
even higher to p=0.5 (so half of the marker alleles are
erroneous) both methods misidentify several offsprings’
ancestors. The Berry et al. approach misidentifies 8 out of
100 ancestors and the approach accommodating errors
misidentifies 6 out of 100 ancestors. The difference does
not seem especially important since error probabilities
that high do not seem very realistic.

Figure 1 explores the sensitivity of the inference to
the assumed data generating error rate. The median of
the 50 probabilities for one of the true ancestors is
plotted against the value of p used to calculate the
probabilities. There are separate curves for each of the
true data-generating error rates. The figure indicates
that one need not know the data-generating genotyping
error rate precisely when the true ancestors are present
among the set of ancestor candidates. The calculated
ancestry probability values will be accurate unless an
unrealistically large genotyping error rate is assumed
(above p=0.6).

The results in Table 2 and Fig. 1 are consistent across
a range of different simulated data sets (i.e., we repeated
the above calculations with different ancestor pairs).
When the true ancestors are present in the data, posterior
ancestry probabilities for the true ancestors are always
quite large, even for error rates much higher than ex-
pected in practice and even when the error rate assumed
for data analysis is different than the true data-generating
error rate. Thus the Berry et al. approach performs quite
well in this case. The calculations to accommodate error
are arguably more realistic, but hardly seem to matter for
the case when the ancestors are present.

Case 2: True ancestors are not present

One limitation of the Bayesian approach is that it
implicitly assumes the ancestors are included among the
candidates; the posterior ancestor probabilities assigned
to all pairs of inbred lines will sum to one (see the for-
mula 1). As one possible use of ancestry calculations
concerns legal determinations of intellectual property it
is important to understand the performance of the

Table 1 The simulated data format

Organism code Marker Allele1 Allele2

Hybrid1 1 2 3
Hybrid1 2 2 5
Hybrid1 4 3 6
... ... ... ...
Hybrid1 104 1 9
Inbred1 1 7 7
Inbred1 3 4 4
... ... ... ...
Inbred100 2 1 1
Inbred100 3 3 3
... ... ... ...
Inbred100 110 3 3
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methods when one or more ancestral line is absent from
the candidate set. To study this issue we use the same
simulated data as above except that the true ancestors’
marker information is removed from the data set prior
to analysis.

For each hybrid that is analyzed the two highest
probabilities assigned to candidate ancestors are re-
corded. Table 3 provides a numerical summary of the
posterior probabilities of the 100 identified ancestors
for a range of data-generating p values (with each
analysis carried out assuming the error rate is correctly
specified). When the true ancestors are not included
among the candidates, the identified ‘‘ancestors’’ are
those whose allele scores happen to match the scores
of the hybrid offspring by chance, and hence we expect
the probability values of being an ancestor should be
lower than those reported in Table 2. When the error

rate is exceptionally low, like p=0.001, the difference
between the Berry et al. method and the modified
approach is hard to see. However, when the misclas-
sification rate gets higher (e.g., greater than 0.1), there
is evidence that the Berry et al. approach assigns
greater confidence to the putative (but incorrect)
ancestor than the approach that accommodates geno-
typing errors. The final column in Table 3 gives the
proportion of the ancestry probabilities greater than
0.9. Such high ancestry probabilities would likely be
interpreted as strong evidence that a correct ancestor
had been found; so differences between the two ap-
proaches in this column are of practical interest.

The results in Table 3 are for 50 hybrids from the
same two simulated ancestors. In order to see the con-
sistency among different simulated data sets, Table 4
provides results concerning the proportion of identified
ancestors with probability values higher than 0.9 for a
number of different data sets (i.e., simulated from dif-
ferent ancestors). The mean proportion higher than 0.9
and the standard deviation (over 15 simulated data sets
with different ancestors) are reported for each p. The
general pattern is the same as seen in Table 3.

The results above assume that the same error rate is
used to create and analyze the data, i.e., that one
knows the correct error rate. We next explore the
relationship between the calculated ancestry probabili-
ties and the assumed genotyping error rate p. There are
50 hybrids in the simulated data set and hence 100
posterior ancestry probabilities are obtained from each
analysis. Figure 2 gives the median of the 100 ancestry
probabilities as a function of p. There are separate
graphs for each value of the data-generating error rate.
The dotted lines in each graph are empirical 90%
posterior intervals for each curve. When we assume
that there are no errors (p=0 on the horizontal axis)
then the ancestry probabilities are identical to those
obtained by the Berry et al. approach. The median
ancestry probabilities are near or higher than 0.8 when
we assume no errors regardless of the magnitude of the
true genotyping error rate. Thus as seen earlier two
‘‘ancestors’’ are always identified with relatively high
probabilities when we assume no errors—these are

Table 2 Distribution of estimated ancestry probabilities with true ancestors included in the data

p Method Minimum First quartile Median Mean Third quartile Maximum

0.001 With Misclas. 1 1 1 1 1 1
Berry et al. 1 1 1 1 1 1

0.01 With Misclas. 1 1 1 1 1 1
Berry et al. 1 1 1 1 1 1

0.1 With Misclas. 1 1 1 1 1 1
Berry et al. 1 1 1 1 1 1

0.2 With Misclas. 1 1 1 1 1 1
Berry et al. 1 1 1 1 1 1

0.3 With Misclas. 0.9847 0.9999 1 0.9998 1 1
Berry et al. 0.9934 1 1 0.9999 1 1

0.5 With Misclas. 0.001932 0.9911 0.9995 0.8902 0.99997 1
Berry et al. 0.00001291 0.9999 1 0.8681 1 1
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Fig. 1 The relationship between the median ancestry posterior
probabilities for one true ancestor and the assumed genotyping
error rate (p). Each curve corresponds to a different true data-
generating genotyping error rate
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clearly overestimates of our confidence when the true
ancestors are not part of the data set! The posterior
ancestry probabilities decrease quickly as the assumed
error rate increases until extreme (and unrealistic) error
rates are reached. Comparison of Figs. 1 and 2 suggests
that incorporating an appropriate genotyping error
into the probability calculation may help reveal whe-
ther the true ancestors are in the candidate pool. The
estimated probabilities assigned to the ‘‘most likely
ancestors’’ will be much higher when the true ancestors
are in the candidate pool than when they are not. This
is especially true for high genotyping error rates.

The effects of linkage

As remarked earlier it is important to assess the
sensitivity of ancestry inferences to violations of the
independence assumption that is implied by the use of
the composite likelihood in our algorithm (and that of
Berry et al. 2002). After all it is common to have markers
that are linked and for some pairs of markers the link-
ages can be very close. Here we incorporate linkage in
our simulated data and assess the performance of our
composite-likelihood-based algorithm for calculating
ancestry probabilities.

Data simulation

Our basic approach to simulating marker data remains
the same. To address linkage we replace steps 3 and 4 of
the original data-generating algorithm (which assumed
independent markers inherited with probability 0.5). For
the most part we work with pairs of linked markers in
which case steps 3 and 4 are replaced by:

3¢. If a pair of markers are linked, then the ancestral
alleles of the first marker in the pair are passed (not
passed) to the hybrid with probability 0.5 as usual.
The alleles of the second marker in the pair are also
passed (not passed) to the hybrid with probability
plink>0.5, where plink controls the degree of linkage.

4¢. If a pair of markers are not linked, then an ancestral
allele is passed (not passed) to the hybrid offspring
with p=0.5 for each marker and the inheritance is
independent of the other member of the pair (note
that this is the same as the original algorithm).We
vary the number of linked pairs, k (recall that there
are 110 simulated markers, hence k £ 55), the degree
of linkage, plink (0.5<plink £ 1), and the genotyping
error rate p.

In addition, as an extreme case, we allow for the
possibility of complete linkage of sets of more than two
markers. For the complete linkage case if alleles on one
marker in the set are inherited (not inherited), then the
alleles on all other markers in the set will also be
inherited (not inherited).

Simulation results

We initially consider pairs of linked markers. A range
of simulated data sets were generated covering all
possible combinations of three different values for the
number of linked pairs (k=11, 22, 55), three different
values of the degree of linkage (plink=0.6, 0.8, 1.0),
and four values of the genotyping error rate (p=0.1,
0.2, 0.3, 0.5). For each combination of k, plink, and p,
we simulate ten hybrids from different ancestor pairs.
Then for each hybrid ancestor probabilities are esti-
mated for all possible ancestors, and the presumed

Table 3 Distribution of estimated ancestry probabilities without true ancestors included in the data

p Method Minimum First quartile Median Mean Third quartile Maximum Proportion‡0.9

0.001 With Misclas. 0.380 0.788 0.915 0.866 0.994 0.999 0.53
Berry et al. 0.381 0.789 0.915 0.866 0.994 1 0.53

0.01 With Misclas. 0.401 0.809 0.903 0.860 0.980 0.999 0.51
Berry et al. 0.402 0.812 0.910 0.862 0.982 1 0.52

0.1 With Misclas. 0.462 0.708 0.924 0.846 0.980 1 0.60
Berry et al. 0.507 0.738 0.946 0.866 0.988 1 0.65

0.2 With Misclas. 0.372 0.751 0.885 0.835 0.980 1 0.43
Berry et al. 0.339 0.803 0.950 0.876 0.990 1 0.68

0.3 With Misclas. 0.226 0.460 0.655 0.662 0.903 0.998 0.26
Berry et al. 0.292 0.609 0.807 0.769 0.982 1 0.39

0.5 With Misclas. 0.178 0.372 0.469 0.552 0.751 1 0.11
Berry et al. 0.313 0.632 0.826 0.775 0.976 1 0.40

Table 4 Proportion of ancestry
probabilities ‡0.90 (with
standard deviation in
parentheses)

Method p=0.001 p=0.01 p=0.1 p=0.3 p=0.5

With Misclas. 0.42 0.43 0.35 0.26 0.09
(0.062) (0.043) (0.043) (0.046) (0.028)

Berry et al. 0.42 0.44 0.40 0.41 0.41
(0.062) (0.039) (0.031) (0.066) (0.046)
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ancestors are taken to be the two with the highest
estimated probabilities. It turns out that all ancestors
are correctly identified with great confidence by both
the Berry et al. approach and our modification except
when data are generated using the extremely unrealistic
genotyping error rate p=0.5. The results suggest a
high degree of robustness for ancestry inferences in the
presence of pairs of linked markers.

For the complete linkage case we considered sets of
5, 10, or 20 perfectly linked markers. The full set of
110 markers are split into groups of the specified size
so that virtually every member is part of a ‘‘linkage
group’’. As the size of the set of linked markers in-
creases there is correspondingly less independent
information on which to base ancestry inference. Once
again we vary the genotyping error rate (p=0.1, 0.2,
0.3, 0.5) and simulate ten hybrids from different
ancestor pairs for each scenario. Table 5 summarizes
the complete linkage results. The proportion of mis-
identified ancestors (out of 20 true ancestors) is given
for each combination of linkage group size and
genotyping error rate. Even if the full market profile is
comprised of sets of 5 or 10 completely linked markers
it is possible to correctly identify all ancestors for
moderate and small genotyping error rates. We only
make errors if p‡0.3. It is only in the most extreme

case, where our 100+ marker profile includes five sets
of 20 completely linked markers, that our ability to
identify ancestors is compromised.

In all, these results support the use of the composite
likelihood approximation for maize ancestry assessment
as long as the genotyping error rate is not extreme and as
long as there are not a large number of perfectly linked
marker sets. The markers in the maize application that
motivated Berry et al. (2002) are spread over ten chro-
mosomes so there should not be many closely linked
markers.

Real data application

In this section, we revisit the data considered by Berry
et al. (2002) using the new approach to accommodating
errors. Of course in this case we don’t know the true
error rate!

The SSR data description

The data contains SSR marker profiles for three hybrids
and 118 inbreds on 195 loci. As often happens real data
present a number of complications not present in the
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Fig. 2 The relationship between the median ancestry posterior
probabilities and the assumed genotyping error rate when true
ancestors are not present. Each figure corresponds to a different

true data-generating genotyping error rate. The solid lines are
median ancestry posterior probabilities and the dashed lines are
empirical 90% intervals
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simulations. Some inbred lines’ marker profiles present
more than one type of allele at some loci. The frequency
of such events depends on how long the inbreeding
process has been carried out for the line in question and
whether there has been unintended pollination from
other genotypes. This by itself does not present a
problem for the algorithms discussed here. However,
this also means that some single-cross hybrids show
more than two alleles per locus, because their inbred
parents are not homozygous. Table 6 shows the format
of the SSR data supplied by Stephen Smith, Deanne
Wright, and Chongqing Xie (Pioneer Hi-Bred Interna-
tional, Inc.). Line 1 in the table is a typical marker for a
hybrid with two distinct alleles assumed to come from
the two ancestral inbred lines. The second line shows a
marker for which there are three alleles present in the
hybrid. This is very likely due to a heterozygous parent
(or two). The two inbreds in Table 6 are generally
homozygous, but marker 2 for ‘‘inbred1’’ is heterozy-
gous. To take this situation into account, the probability
of ancestry might be evaluated as the mean of a number
of ancestry probability values, each calculated with a
random choice of two of the hybrid’s alleles for each
locus. Because this is rare in the maize data, we make a
single random choice of two alleles per locus and ignore
the variation due to the existence of other possibilities.

Results

Table 7 lists the identified ancestors together with the
next closest possible relative for each of the three hybrids

as calculated using the Berry et al. approach (p=0). The
identification codes of the inbreds and the inbreds’
ancestry probabilities (in parentheses) are shown in the
table. Five of the six ancestors are identified as having
very high probabilities of being the closest ancestor, the
exception being inbred 90s identification as a likely
ancestor for the third hybrid.

Figure 3 illustrated the effect of allowing for geno-
typing errors. The figure shows the relationship between
the posterior ancestry probabilities for each of the six
ancestors identified in Table 7 and the assumed geno-
typing error rate, p. Each curve in the figure corresponds
to a different identified ancestor. Except for inbred 90,
all the ancestry probabilities are at least 0.8 even when
the value of p is as large as 0.4. From our previous
discussion, this suggests that we are likely looking at true
ancestors. The most unusual case is inbred 90, which is
identified as one of the two ancestors for hybrid 3. The
ancestry probability (0.76) for inbred 90 at p=0 is not
high. This implies that the data may include other can-
didates that are almost as closely related to the hybrid as
inbred 90. The ancestry probability varies as the as-
sumed error rate changes because we may begin to favor
another candidate as the closest ancestor.

Inferring the error rate

The analyses presented here calculated ancestry proba-
bilities for a range of assumed error rates. The error
model introduced in this paper can be used to infer the
error rate. For example, Zhang and Stern (2003) obtain
the maximum likelihood estimate for p in the maize data
as approximately 0.005, though there is consider-
able uncertainty given the relatively small amount of

Table 5 Proportion of misidentified ancestors with full linkage

Number of markers in
full-linkage group

Genotyping error rate (p)

0.1 0.2 0.3 0.5

5 0.00 0.00 0.00 0.20
10 0.00 0.00 0.05 0.15
20 0.10 0.10 0.15 0.30

Note: There are 110 markers in total, so for the first case, there are
22 full-linkage groups each with five fully linked markers; for the
second case, 11 full-linkage groups each with five fully linked
markers; and for the third case, five full-linkage groups each with
20 fully linked markers plus one full-linkage group with ten fully
linked markers

Table 6 Format of the SSR
data Code Marker Allele1 Allele2 Allele3 Allele4

Hybrid1 1 8 9
Hybrid1 2 2 3 1
... ... ... ... ... ...
Inbred1 1 9 9
Inbred1 2 4 3
... ... ... ... ... ...
Inbred11 1 5 5
Inbred11 2 3 3
... ... ... ... ... ...

Table 7 Probability assessment of ancestry from the Berry et al.
approach

Hybrid Ancestor 1 Ancestor 2 Next closest relative

1 100 16 15
(0.99979) (0.99934) (0.64373·10�3)

2 27 85 92
(1.0000) (0.94157) (0.058397)

3 37 90 71
(1.0000) (0.75796) (0.23032)
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information contained in the three hybrids. Our col-
laborators who supplied the maize data indicated that
an error rate of 0.05 is more realistic. For error rates as
small as these there is little difference between the
ancestry probabilities calculated with and without
accommodating genotyping errors.

Summary

This paper extends the ancestry probability assessment
method of Berry et al. (2002) to account for genotyping
errors. For this initial exploration of the issue we assume
a known constant error rate across the genome. Simu-
lations are used to study the effect of genotyping errors
on ancestry probability calculations and the relationship
between the calculated ancestry probabilities and the
assumed genotyping error rate p. The simulations indi-
cate that when the error rate is high and the true
ancestors are not in the data set, the Berry et al. ap-
proach (which does not explicitly address genotyping
errors) tends to produce slightly higher ancestry proba-
bilities than the approach that accommodates errors.
For low error rates, including those that seem most
likely in practice, our simulations support the robustness
results of Berry et al. (2002). Their method produces
reliable inferences about ancestry.

There are some limitations in our approach. We fol-
low Berry et al. (2002) in using a composite likelihood
approximation to the full likelihood of the marker

profile. This approximation matches the exact likelihood
only if all of the markers segregate independently. The
empirical evidence presented here and in Berry et al.
(2002) suggests that the composite likelihood approxi-
mation is adequate for this application to ancestry
determination. It is important that one determines
whether such an approximation is adequate before
applying the method in other organisms or with different
marker profiles. In building up the model to accommo-
date genotyping errors we only consider genotyping er-
rors for hybrids and assume independent occurrences of
errors along the genome. Loosening these assumptions is
an area of current research.
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